from fastapi import APIRouter, Depends from sqlalchemy.ext.asyncio import AsyncSession from app.database import get_db from app.schemas.query import QueryRequest, QueryResponse, VideoData from app.services.query_service import query_videos from app.services.calculator import calculate_metrics from app.services.brand_api import get_brand_names from app.api.v1.export import set_export_data router = APIRouter() @router.post("/query", response_model=QueryResponse) async def query( request: QueryRequest, db: AsyncSession = Depends(get_db), ) -> QueryResponse: """ 批量查询 KOL 视频数据. 支持三种查询方式: - star_id: 按星图ID精准匹配 - unique_id: 按达人unique_id精准匹配 - nickname: 按达人昵称模糊匹配 """ try: # 1. 查询数据库 videos = await query_videos(db, request.type, request.values) if not videos: return QueryResponse(success=True, data=[], total=0) # 2. 提取品牌ID并批量获取品牌名称 brand_ids = [v.brand_id for v in videos if v.brand_id] brand_map = await get_brand_names(brand_ids) if brand_ids else {} # 3. 转换为响应模型并计算指标 data = [] for video in videos: video_data = VideoData.model_validate(video) # 填充品牌名称 if video.brand_id: video_data.brand_name = brand_map.get(video.brand_id, video.brand_id) # 计算预估指标 metrics = calculate_metrics( estimated_video_cost=video.estimated_video_cost, natural_play_cnt=video.natural_play_cnt, total_play_cnt=video.total_play_cnt, after_view_search_uv=video.after_view_search_uv, ) video_data.estimated_natural_cpm = metrics["estimated_natural_cpm"] video_data.estimated_natural_search_uv = metrics["estimated_natural_search_uv"] video_data.estimated_natural_search_cost = metrics["estimated_natural_search_cost"] data.append(video_data) # 缓存数据供导出使用 set_export_data([d.model_dump() for d in data]) return QueryResponse(success=True, data=data, total=len(data)) except Exception as e: return QueryResponse(success=False, data=[], total=0, error=str(e))