""" 竞品 Logo 检测服务单元测试 TDD 测试用例 - 基于 FeatureSummary.md F-12 的验收标准 验收标准: - F1 ≥ 0.85(含遮挡 30% 场景) - 新 Logo 上传即刻生效 """ import pytest from typing import Any # 导入待实现的模块(TDD 红灯阶段) # from app.services.ai.logo_detector import LogoDetector, LogoDetection class TestLogoDetector: """Logo 检测器测试""" @pytest.mark.ai @pytest.mark.unit def test_logo_detector_initialization(self) -> None: """测试 Logo 检测器初始化""" # TODO: 实现 Logo 检测器 # detector = LogoDetector() # assert detector.is_ready() # assert detector.logo_count > 0 # 预加载的 Logo 数量 pytest.skip("待实现:Logo 检测器初始化") @pytest.mark.ai @pytest.mark.unit def test_detect_logo_in_image(self) -> None: """测试图片中的 Logo 检测""" # TODO: 实现 Logo 检测 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg") # # assert result.status == "success" # assert len(result.detections) > 0 pytest.skip("待实现:Logo 检测") @pytest.mark.ai @pytest.mark.unit def test_logo_detection_output_format(self) -> None: """测试 Logo 检测输出格式""" # TODO: 实现 Logo 检测 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg") # # # 验证输出结构 # assert hasattr(result, "detections") # for detection in result.detections: # assert hasattr(detection, "logo_id") # assert hasattr(detection, "brand_name") # assert hasattr(detection, "confidence") # assert hasattr(detection, "bbox") # assert 0 <= detection.confidence <= 1 # assert len(detection.bbox) == 4 pytest.skip("待实现:Logo 检测输出格式") class TestLogoDetectionAccuracy: """Logo 检测准确率测试""" @pytest.mark.ai @pytest.mark.unit def test_f1_score_threshold(self) -> None: """ 测试 Logo 检测 F1 值 验收标准:F1 ≥ 0.85 """ # TODO: 使用标注测试集验证 # detector = LogoDetector() # test_set = load_logo_labeled_dataset() # ≥ 200 张图片 # # predictions = [] # ground_truths = [] # # for sample in test_set: # result = detector.detect(sample["image_path"]) # predictions.append(result.detections) # ground_truths.append(sample["ground_truth_logos"]) # # f1 = calculate_f1_score(predictions, ground_truths) # assert f1 >= 0.85, f"F1 {f1:.2f} 低于阈值 0.85" pytest.skip("待实现:Logo F1 测试") @pytest.mark.ai @pytest.mark.unit def test_precision_recall(self) -> None: """测试查准率和查全率""" # TODO: 使用标注测试集验证 # detector = LogoDetector() # test_set = load_logo_labeled_dataset() # # precision, recall = calculate_precision_recall(detector, test_set) # # # 查准率和查全率都应该较高 # assert precision >= 0.80 # assert recall >= 0.80 pytest.skip("待实现:查准率查全率测试") class TestLogoOcclusion: """Logo 遮挡检测测试""" @pytest.mark.ai @pytest.mark.unit @pytest.mark.parametrize("occlusion_percent,should_detect", [ (0, True), # 无遮挡 (10, True), # 10% 遮挡 (20, True), # 20% 遮挡 (30, True), # 30% 遮挡 - 边界 (40, False), # 40% 遮挡 - 可能检测失败 (50, False), # 50% 遮挡 ]) def test_logo_detection_with_occlusion( self, occlusion_percent: int, should_detect: bool, ) -> None: """ 测试遮挡场景下的 Logo 检测 验收标准:30% 遮挡仍可检测 """ # TODO: 实现遮挡测试 # detector = LogoDetector() # image_path = f"tests/fixtures/images/logo_occluded_{occlusion_percent}pct.jpg" # result = detector.detect(image_path) # # if should_detect: # assert len(result.detections) > 0, \ # f"{occlusion_percent}% 遮挡应能检测到 Logo" # # 置信度可能较低 # assert result.detections[0].confidence >= 0.5 pytest.skip(f"待实现:{occlusion_percent}% 遮挡 Logo 检测") @pytest.mark.ai @pytest.mark.unit def test_partial_logo_detection(self) -> None: """测试部分可见 Logo 检测""" # TODO: 实现部分可见测试 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/logo_partial.jpg") # # # 部分可见的 Logo 应标记 partial=True # if len(result.detections) > 0: # assert result.detections[0].is_partial pytest.skip("待实现:部分可见 Logo 检测") class TestLogoDynamicUpdate: """Logo 动态更新测试""" @pytest.mark.ai @pytest.mark.unit def test_add_new_logo_instant_effect(self) -> None: """ 测试新 Logo 上传即刻生效 验收标准:新增竞品 Logo 应立即可检测 """ # TODO: 实现动态添加测试 # detector = LogoDetector() # # # 检测前应无法识别 # result_before = detector.detect("tests/fixtures/images/with_new_logo.jpg") # assert not any(d.brand_name == "NewBrand" for d in result_before.detections) # # # 添加新 Logo # detector.add_logo( # logo_image="tests/fixtures/logos/new_brand_logo.png", # brand_name="NewBrand" # ) # # # 检测后应能识别 # result_after = detector.detect("tests/fixtures/images/with_new_logo.jpg") # assert any(d.brand_name == "NewBrand" for d in result_after.detections) pytest.skip("待实现:Logo 动态添加") @pytest.mark.ai @pytest.mark.unit def test_remove_logo(self) -> None: """测试移除 Logo""" # TODO: 实现 Logo 移除 # detector = LogoDetector() # # # 移除前可检测 # result_before = detector.detect("tests/fixtures/images/with_existing_logo.jpg") # assert any(d.brand_name == "ExistingBrand" for d in result_before.detections) # # # 移除 Logo # detector.remove_logo(brand_name="ExistingBrand") # # # 移除后不再检测 # result_after = detector.detect("tests/fixtures/images/with_existing_logo.jpg") # assert not any(d.brand_name == "ExistingBrand" for d in result_after.detections) pytest.skip("待实现:Logo 移除") @pytest.mark.ai @pytest.mark.unit def test_update_logo_variants(self) -> None: """测试更新 Logo 变体""" # TODO: 实现 Logo 变体更新 # detector = LogoDetector() # # # 添加多个变体 # detector.add_logo_variant( # brand_name="Brand", # variant_image="tests/fixtures/logos/brand_variant_dark.png", # variant_type="dark_mode" # ) # # # 应能检测新变体 # result = detector.detect("tests/fixtures/images/with_dark_logo.jpg") # assert len(result.detections) > 0 pytest.skip("待实现:Logo 变体更新") class TestLogoVideoProcessing: """视频 Logo 检测测试""" @pytest.mark.ai @pytest.mark.unit def test_detect_logo_in_video_frames(self) -> None: """测试视频帧中的 Logo 检测""" # TODO: 实现视频帧检测 # detector = LogoDetector() # frame_paths = [ # f"tests/fixtures/images/video_frame_{i}.jpg" # for i in range(30) # ] # # results = detector.batch_detect(frame_paths) # # assert len(results) == 30 # # 至少部分帧应检测到 Logo # frames_with_logo = sum(1 for r in results if len(r.detections) > 0) # assert frames_with_logo > 0 pytest.skip("待实现:视频帧 Logo 检测") @pytest.mark.ai @pytest.mark.unit def test_logo_tracking_across_frames(self) -> None: """测试跨帧 Logo 跟踪""" # TODO: 实现跨帧跟踪 # detector = LogoDetector() # # # 检测连续帧 # frame_results = [] # for i in range(10): # result = detector.detect(f"tests/fixtures/images/tracking_frame_{i}.jpg") # frame_results.append(result) # # # 跟踪应返回相同的 track_id # track_ids = [ # r.detections[0].track_id # for r in frame_results # if len(r.detections) > 0 # ] # assert len(set(track_ids)) == 1 # 同一个 Logo pytest.skip("待实现:跨帧 Logo 跟踪") class TestLogoSpecialCases: """Logo 检测特殊情况测试""" @pytest.mark.ai @pytest.mark.unit def test_no_logo_image(self) -> None: """测试无 Logo 图片""" # TODO: 实现无 Logo 测试 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/no_logo.jpg") # # assert result.status == "success" # assert len(result.detections) == 0 pytest.skip("待实现:无 Logo 图片处理") @pytest.mark.ai @pytest.mark.unit def test_multiple_logos_detection(self) -> None: """测试多 Logo 检测""" # TODO: 实现多 Logo 测试 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/multiple_logos.jpg") # # assert len(result.detections) >= 2 # # 每个检测应有唯一 ID # logo_ids = [d.logo_id for d in result.detections] # assert len(logo_ids) == len(set(logo_ids)) pytest.skip("待实现:多 Logo 检测") @pytest.mark.ai @pytest.mark.unit def test_similar_logo_distinction(self) -> None: """测试相似 Logo 区分""" # TODO: 实现相似 Logo 区分 # detector = LogoDetector() # result = detector.detect("tests/fixtures/images/similar_logos.jpg") # # # 应能区分相似但不同的 Logo # brand_names = [d.brand_name for d in result.detections] # assert "BrandA" in brand_names # assert "BrandB" in brand_names # 相似但不同 pytest.skip("待实现:相似 Logo 区分") @pytest.mark.ai @pytest.mark.unit def test_distorted_logo_detection(self) -> None: """测试变形 Logo 检测""" # TODO: 实现变形 Logo 测试 # detector = LogoDetector() # # # 测试不同变形 # test_cases = [ # "logo_stretched.jpg", # "logo_rotated.jpg", # "logo_skewed.jpg", # ] # # for image_name in test_cases: # result = detector.detect(f"tests/fixtures/images/{image_name}") # assert len(result.detections) > 0, f"变形 Logo {image_name} 应被检测" pytest.skip("待实现:变形 Logo 检测") class TestLogoPerformance: """Logo 检测性能测试""" @pytest.mark.ai @pytest.mark.performance def test_detection_speed(self) -> None: """测试检测速度""" # TODO: 实现性能测试 # import time # # detector = LogoDetector() # # start_time = time.time() # result = detector.detect("tests/fixtures/images/1080p_sample.jpg") # processing_time = time.time() - start_time # # # 单张图片应 < 200ms # assert processing_time < 0.2 pytest.skip("待实现:Logo 检测速度测试") @pytest.mark.ai @pytest.mark.performance def test_batch_detection_speed(self) -> None: """测试批量检测速度""" # TODO: 实现批量性能测试 # import time # # detector = LogoDetector() # frame_paths = [ # f"tests/fixtures/images/frame_{i}.jpg" # for i in range(30) # ] # # start_time = time.time() # results = detector.batch_detect(frame_paths) # processing_time = time.time() - start_time # # # 30 帧应在 2 秒内完成 # assert processing_time < 2.0 pytest.skip("待实现:批量 Logo 检测速度测试")