videos1.0/backend/tests/ai/test_asr_service.py
Your Name 040aada160 feat: 添加全面的 TDD 测试套件框架
基于项目需求文档(PRD.md, FeatureSummary.md, DevelopmentPlan.md,
UIDesign.md, User_Role_Interfaces.md)编写的 TDD 测试用例。

后端测试 (Python/pytest):
- 单元测试: rule_engine, brief_parser, timestamp_alignment,
  video_auditor, validators
- 集成测试: API Brief, Video, Review 端点
- AI 模块测试: ASR, OCR, Logo 检测服务
- 全局 fixtures 和 pytest 配置

前端测试 (TypeScript/Vitest):
- 工具函数测试: utils.test.ts
- 组件测试: Button, VideoPlayer, ViolationList
- Hooks 测试: useVideoAudit, useVideoPlayer, useAppeal
- MSW mock handlers 配置

E2E 测试 (Playwright):
- 认证流程测试
- 视频上传流程测试
- 视频审核流程测试
- 申诉流程测试

所有测试当前使用 pytest.skip() / it.skip() 作为占位符,
遵循 TDD 红灯阶段 - 等待实现代码后运行。

验收标准覆盖:
- ASR WER ≤ 10%
- OCR 准确率 ≥ 95%
- Logo F1 ≥ 0.85
- 时间戳误差 ≤ 0.5s
- 频次统计准确率 ≥ 95%

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 17:22:24 +08:00

328 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
ASR 服务单元测试
TDD 测试用例 - 基于 DevelopmentPlan.md 的验收标准
验收标准:
- 字错率 (WER) ≤ 10%
- 时间戳精度 ≤ 100ms
"""
import pytest
from typing import Any
# 导入待实现的模块TDD 红灯阶段)
# from app.services.ai.asr import ASRService, ASRResult, ASRSegment
class TestASRService:
"""ASR 服务测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_asr_service_initialization(self) -> None:
"""测试 ASR 服务初始化"""
# TODO: 实现 ASR 服务
# service = ASRService()
# assert service.is_ready()
# assert service.model_name is not None
pytest.skip("待实现ASR 服务初始化")
@pytest.mark.ai
@pytest.mark.unit
def test_asr_transcribe_audio_file(self) -> None:
"""测试音频文件转写"""
# TODO: 实现音频转写
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/sample.wav")
#
# assert result.status == "success"
# assert result.text is not None
# assert len(result.text) > 0
pytest.skip("待实现:音频转写")
@pytest.mark.ai
@pytest.mark.unit
def test_asr_output_format(self) -> None:
"""测试 ASR 输出格式"""
# TODO: 实现 ASR 服务
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/sample.wav")
#
# # 验证输出结构
# assert hasattr(result, "text")
# assert hasattr(result, "segments")
# assert hasattr(result, "language")
# assert hasattr(result, "duration_ms")
#
# # 验证 segment 结构
# for segment in result.segments:
# assert hasattr(segment, "text")
# assert hasattr(segment, "start_ms")
# assert hasattr(segment, "end_ms")
# assert hasattr(segment, "confidence")
# assert segment.end_ms >= segment.start_ms
pytest.skip("待实现ASR 输出格式")
class TestASRAccuracy:
"""ASR 准确率测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_word_error_rate_threshold(self) -> None:
"""
测试字错率阈值
验收标准WER ≤ 10%
"""
# TODO: 使用标注测试集验证
# service = ASRService()
# test_cases = load_asr_labeled_dataset()
#
# total_errors = 0
# total_words = 0
#
# for case in test_cases:
# result = service.transcribe(case["audio_path"])
# wer = calculate_word_error_rate(
# result.text,
# case["ground_truth"]
# )
# total_errors += wer * len(case["ground_truth"])
# total_words += len(case["ground_truth"])
#
# overall_wer = total_errors / total_words
# assert overall_wer <= 0.10, f"WER {overall_wer:.2%} 超过阈值 10%"
pytest.skip("待实现WER 测试")
@pytest.mark.ai
@pytest.mark.unit
@pytest.mark.parametrize("audio_type,expected_wer_threshold", [
("clean_speech", 0.05), # 清晰语音 WER < 5%
("background_music", 0.10), # 背景音乐 WER < 10%
("multiple_speakers", 0.15), # 多人对话 WER < 15%
("noisy_environment", 0.20), # 嘈杂环境 WER < 20%
])
def test_wer_by_audio_type(
self,
audio_type: str,
expected_wer_threshold: float,
) -> None:
"""测试不同音频类型的 WER"""
# TODO: 实现分类型 WER 测试
# service = ASRService()
# test_cases = load_asr_test_set_by_type(audio_type)
#
# wer = calculate_average_wer(service, test_cases)
# assert wer <= expected_wer_threshold
pytest.skip(f"待实现:{audio_type} WER 测试")
class TestASRTimestamp:
"""ASR 时间戳测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_timestamp_monotonic_increase(self) -> None:
"""测试时间戳单调递增"""
# TODO: 实现时间戳验证
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/sample.wav")
#
# prev_end = 0
# for segment in result.segments:
# assert segment.start_ms >= prev_end, \
# f"时间戳不是单调递增: {segment.start_ms} < {prev_end}"
# prev_end = segment.end_ms
pytest.skip("待实现:时间戳单调递增")
@pytest.mark.ai
@pytest.mark.unit
def test_timestamp_precision(self) -> None:
"""
测试时间戳精度
验收标准:精度 ≤ 100ms
"""
# TODO: 使用标注测试集验证
# service = ASRService()
# test_cases = load_timestamp_labeled_dataset()
#
# total_error = 0
# total_segments = 0
#
# for case in test_cases:
# result = service.transcribe(case["audio_path"])
# for i, segment in enumerate(result.segments):
# if i < len(case["ground_truth_timestamps"]):
# gt = case["ground_truth_timestamps"][i]
# start_error = abs(segment.start_ms - gt["start_ms"])
# end_error = abs(segment.end_ms - gt["end_ms"])
# total_error += (start_error + end_error) / 2
# total_segments += 1
#
# avg_error = total_error / total_segments if total_segments > 0 else 0
# assert avg_error <= 100, f"平均时间戳误差 {avg_error:.0f}ms 超过阈值 100ms"
pytest.skip("待实现:时间戳精度测试")
@pytest.mark.ai
@pytest.mark.unit
def test_timestamp_within_audio_duration(self) -> None:
"""测试时间戳在音频时长范围内"""
# TODO: 实现边界验证
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/sample.wav")
#
# for segment in result.segments:
# assert segment.start_ms >= 0
# assert segment.end_ms <= result.duration_ms
pytest.skip("待实现:时间戳边界验证")
class TestASRLanguage:
"""ASR 语言处理测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_chinese_mandarin_recognition(self) -> None:
"""测试普通话识别"""
# TODO: 实现普通话测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/mandarin.wav")
#
# assert result.language == "zh-CN"
# assert "你好" in result.text or len(result.text) > 0
pytest.skip("待实现:普通话识别")
@pytest.mark.ai
@pytest.mark.unit
def test_mixed_language_handling(self) -> None:
"""测试中英混合语音处理"""
# TODO: 实现混合语言测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/mixed_cn_en.wav")
#
# # 应能识别中英文混合内容
# assert result.status == "success"
pytest.skip("待实现:中英混合识别")
@pytest.mark.ai
@pytest.mark.unit
def test_dialect_handling(self) -> None:
"""测试方言处理"""
# TODO: 实现方言测试
# service = ASRService()
#
# # 方言可能降级处理或提示
# result = service.transcribe("tests/fixtures/audio/cantonese.wav")
#
# if result.status == "success":
# assert result.language in ["zh-CN", "zh-HK", "yue"]
# else:
# assert result.warning == "dialect_detected"
pytest.skip("待实现:方言处理")
class TestASRSpecialCases:
"""ASR 特殊情况测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_silent_audio(self) -> None:
"""测试静音音频"""
# TODO: 实现静音测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/silent.wav")
#
# assert result.status == "success"
# assert result.text == "" or result.segments == []
pytest.skip("待实现:静音音频处理")
@pytest.mark.ai
@pytest.mark.unit
def test_very_short_audio(self) -> None:
"""测试极短音频 (< 1秒)"""
# TODO: 实现极短音频测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/short_500ms.wav")
#
# assert result.status == "success"
pytest.skip("待实现:极短音频处理")
@pytest.mark.ai
@pytest.mark.unit
def test_long_audio(self) -> None:
"""测试长音频 (> 5分钟)"""
# TODO: 实现长音频测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/long_10min.wav")
#
# assert result.status == "success"
# assert result.duration_ms >= 600000 # 10分钟
pytest.skip("待实现:长音频处理")
@pytest.mark.ai
@pytest.mark.unit
def test_corrupted_audio_handling(self) -> None:
"""测试损坏音频处理"""
# TODO: 实现错误处理测试
# service = ASRService()
# result = service.transcribe("tests/fixtures/audio/corrupted.wav")
#
# assert result.status == "error"
# assert "corrupted" in result.error_message.lower() or \
# "invalid" in result.error_message.lower()
pytest.skip("待实现:损坏音频处理")
class TestASRPerformance:
"""ASR 性能测试"""
@pytest.mark.ai
@pytest.mark.performance
def test_transcription_speed(self) -> None:
"""
测试转写速度
验收标准:实时率 ≤ 0.5 (转写时间 / 音频时长)
"""
# TODO: 实现性能测试
# import time
#
# service = ASRService()
#
# # 60秒测试音频
# start_time = time.time()
# result = service.transcribe("tests/fixtures/audio/60s_sample.wav")
# processing_time = time.time() - start_time
#
# audio_duration = result.duration_ms / 1000
# real_time_factor = processing_time / audio_duration
#
# assert real_time_factor <= 0.5, \
# f"实时率 {real_time_factor:.2f} 超过阈值 0.5"
pytest.skip("待实现:转写速度测试")
@pytest.mark.ai
@pytest.mark.performance
def test_concurrent_transcription(self) -> None:
"""测试并发转写"""
# TODO: 实现并发测试
# import asyncio
#
# service = ASRService()
#
# async def transcribe_one(audio_path: str):
# return await service.transcribe_async(audio_path)
#
# # 并发处理 5 个音频
# tasks = [
# transcribe_one(f"tests/fixtures/audio/sample_{i}.wav")
# for i in range(5)
# ]
# results = await asyncio.gather(*tasks)
#
# assert all(r.status == "success" for r in results)
pytest.skip("待实现:并发转写测试")