videos1.0/backend/tests/ai/test_ocr_service.py
Your Name 040aada160 feat: 添加全面的 TDD 测试套件框架
基于项目需求文档(PRD.md, FeatureSummary.md, DevelopmentPlan.md,
UIDesign.md, User_Role_Interfaces.md)编写的 TDD 测试用例。

后端测试 (Python/pytest):
- 单元测试: rule_engine, brief_parser, timestamp_alignment,
  video_auditor, validators
- 集成测试: API Brief, Video, Review 端点
- AI 模块测试: ASR, OCR, Logo 检测服务
- 全局 fixtures 和 pytest 配置

前端测试 (TypeScript/Vitest):
- 工具函数测试: utils.test.ts
- 组件测试: Button, VideoPlayer, ViolationList
- Hooks 测试: useVideoAudit, useVideoPlayer, useAppeal
- MSW mock handlers 配置

E2E 测试 (Playwright):
- 认证流程测试
- 视频上传流程测试
- 视频审核流程测试
- 申诉流程测试

所有测试当前使用 pytest.skip() / it.skip() 作为占位符,
遵循 TDD 红灯阶段 - 等待实现代码后运行。

验收标准覆盖:
- ASR WER ≤ 10%
- OCR 准确率 ≥ 95%
- Logo F1 ≥ 0.85
- 时间戳误差 ≤ 0.5s
- 频次统计准确率 ≥ 95%

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 17:22:24 +08:00

308 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
OCR 服务单元测试
TDD 测试用例 - 基于 DevelopmentPlan.md 的验收标准
验收标准:
- 准确率 ≥ 95%(含复杂背景)
"""
import pytest
from typing import Any
# 导入待实现的模块TDD 红灯阶段)
# from app.services.ai.ocr import OCRService, OCRResult, OCRDetection
class TestOCRService:
"""OCR 服务测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_service_initialization(self) -> None:
"""测试 OCR 服务初始化"""
# TODO: 实现 OCR 服务
# service = OCRService()
# assert service.is_ready()
# assert service.model_name is not None
pytest.skip("待实现OCR 服务初始化")
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_extract_text_from_image(self) -> None:
"""测试从图片提取文字"""
# TODO: 实现文字提取
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/text_sample.jpg")
#
# assert result.status == "success"
# assert len(result.detections) > 0
pytest.skip("待实现:图片文字提取")
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_output_format(self) -> None:
"""测试 OCR 输出格式"""
# TODO: 实现 OCR 服务
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/text_sample.jpg")
#
# # 验证输出结构
# assert hasattr(result, "detections")
# assert hasattr(result, "full_text")
#
# # 验证 detection 结构
# for detection in result.detections:
# assert hasattr(detection, "text")
# assert hasattr(detection, "confidence")
# assert hasattr(detection, "bbox")
# assert len(detection.bbox) == 4 # [x1, y1, x2, y2]
pytest.skip("待实现OCR 输出格式")
class TestOCRAccuracy:
"""OCR 准确率测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_accuracy_threshold(self) -> None:
"""
测试 OCR 准确率阈值
验收标准:准确率 ≥ 95%
"""
# TODO: 使用标注测试集验证
# service = OCRService()
# test_cases = load_ocr_labeled_dataset()
#
# correct = 0
# for case in test_cases:
# result = service.extract_text(case["image_path"])
# if normalize_text(result.full_text) == normalize_text(case["ground_truth"]):
# correct += 1
#
# accuracy = correct / len(test_cases)
# assert accuracy >= 0.95, f"准确率 {accuracy:.2%} 低于阈值 95%"
pytest.skip("待实现OCR 准确率测试")
@pytest.mark.ai
@pytest.mark.unit
@pytest.mark.parametrize("background_type,expected_accuracy", [
("simple_white", 0.99), # 简单白底
("solid_color", 0.98), # 纯色背景
("gradient", 0.95), # 渐变背景
("complex_image", 0.90), # 复杂图片背景
("video_frame", 0.90), # 视频帧
])
def test_ocr_accuracy_by_background(
self,
background_type: str,
expected_accuracy: float,
) -> None:
"""测试不同背景类型的 OCR 准确率"""
# TODO: 实现分背景类型测试
# service = OCRService()
# test_cases = load_ocr_test_set_by_background(background_type)
#
# accuracy = calculate_ocr_accuracy(service, test_cases)
# assert accuracy >= expected_accuracy
pytest.skip(f"待实现:{background_type} OCR 准确率测试")
class TestOCRChinese:
"""中文 OCR 测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_simplified_chinese_recognition(self) -> None:
"""测试简体中文识别"""
# TODO: 实现简体中文测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/simplified_chinese.jpg")
#
# assert "测试" in result.full_text
pytest.skip("待实现:简体中文识别")
@pytest.mark.ai
@pytest.mark.unit
def test_traditional_chinese_recognition(self) -> None:
"""测试繁体中文识别"""
# TODO: 实现繁体中文测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/traditional_chinese.jpg")
#
# assert result.status == "success"
pytest.skip("待实现:繁体中文识别")
@pytest.mark.ai
@pytest.mark.unit
def test_mixed_chinese_english(self) -> None:
"""测试中英混合文字识别"""
# TODO: 实现中英混合测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/mixed_cn_en.jpg")
#
# # 应能同时识别中英文
# assert result.status == "success"
pytest.skip("待实现:中英混合识别")
class TestOCRVideoFrame:
"""视频帧 OCR 测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_video_subtitle(self) -> None:
"""测试视频字幕识别"""
# TODO: 实现字幕识别
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/video_subtitle.jpg")
#
# assert len(result.detections) > 0
# # 字幕通常在画面下方
# subtitle_detection = result.detections[0]
# assert subtitle_detection.bbox[1] > 0.6 # y 坐标在下半部分
pytest.skip("待实现:视频字幕识别")
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_watermark_detection(self) -> None:
"""测试水印文字识别"""
# TODO: 实现水印识别
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/with_watermark.jpg")
#
# # 应能检测到水印文字
# watermark_found = any(
# d.is_watermark for d in result.detections
# )
# assert watermark_found or len(result.detections) > 0
pytest.skip("待实现:水印文字识别")
@pytest.mark.ai
@pytest.mark.unit
def test_ocr_batch_video_frames(self) -> None:
"""测试批量视频帧 OCR"""
# TODO: 实现批量处理
# service = OCRService()
# frame_paths = [
# f"tests/fixtures/images/frame_{i}.jpg"
# for i in range(10)
# ]
#
# results = service.batch_extract(frame_paths)
#
# assert len(results) == 10
# assert all(r.status == "success" for r in results)
pytest.skip("待实现:批量视频帧 OCR")
class TestOCRSpecialCases:
"""OCR 特殊情况测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_rotated_text(self) -> None:
"""测试旋转文字识别"""
# TODO: 实现旋转文字测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/rotated_text.jpg")
#
# assert result.status == "success"
# assert len(result.detections) > 0
pytest.skip("待实现:旋转文字识别")
@pytest.mark.ai
@pytest.mark.unit
def test_vertical_text(self) -> None:
"""测试竖排文字识别"""
# TODO: 实现竖排文字测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/vertical_text.jpg")
#
# assert result.status == "success"
pytest.skip("待实现:竖排文字识别")
@pytest.mark.ai
@pytest.mark.unit
def test_artistic_font(self) -> None:
"""测试艺术字体识别"""
# TODO: 实现艺术字体测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/artistic_font.jpg")
#
# # 艺术字体准确率可能较低,但应能识别
# assert result.status == "success"
pytest.skip("待实现:艺术字体识别")
@pytest.mark.ai
@pytest.mark.unit
def test_no_text_image(self) -> None:
"""测试无文字图片"""
# TODO: 实现无文字测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/no_text.jpg")
#
# assert result.status == "success"
# assert len(result.detections) == 0
# assert result.full_text == ""
pytest.skip("待实现:无文字图片处理")
@pytest.mark.ai
@pytest.mark.unit
def test_blurry_text(self) -> None:
"""测试模糊文字识别"""
# TODO: 实现模糊文字测试
# service = OCRService()
# result = service.extract_text("tests/fixtures/images/blurry_text.jpg")
#
# # 模糊文字可能识别失败或置信度低
# if result.status == "success" and len(result.detections) > 0:
# avg_confidence = sum(d.confidence for d in result.detections) / len(result.detections)
# assert avg_confidence < 0.9 # 置信度应较低
pytest.skip("待实现:模糊文字识别")
class TestOCRPerformance:
"""OCR 性能测试"""
@pytest.mark.ai
@pytest.mark.performance
def test_ocr_processing_speed(self) -> None:
"""测试 OCR 处理速度"""
# TODO: 实现性能测试
# import time
#
# service = OCRService()
#
# # 标准 1080p 图片
# start_time = time.time()
# result = service.extract_text("tests/fixtures/images/1080p_sample.jpg")
# processing_time = time.time() - start_time
#
# # 单张图片处理应 < 1 秒
# assert processing_time < 1.0, \
# f"处理时间 {processing_time:.2f}s 超过阈值 1s"
pytest.skip("待实现OCR 处理速度测试")
@pytest.mark.ai
@pytest.mark.performance
def test_ocr_batch_processing_speed(self) -> None:
"""测试批量 OCR 处理速度"""
# TODO: 实现批量性能测试
# import time
#
# service = OCRService()
# frame_paths = [
# f"tests/fixtures/images/frame_{i}.jpg"
# for i in range(30) # 30 帧 = 1 秒视频 @ 30fps
# ]
#
# start_time = time.time()
# results = service.batch_extract(frame_paths)
# processing_time = time.time() - start_time
#
# # 30 帧应在 5 秒内处理完成
# assert processing_time < 5.0
pytest.skip("待实现:批量 OCR 处理速度测试")