基于项目需求文档(PRD.md, FeatureSummary.md, DevelopmentPlan.md, UIDesign.md, User_Role_Interfaces.md)编写的 TDD 测试用例。 后端测试 (Python/pytest): - 单元测试: rule_engine, brief_parser, timestamp_alignment, video_auditor, validators - 集成测试: API Brief, Video, Review 端点 - AI 模块测试: ASR, OCR, Logo 检测服务 - 全局 fixtures 和 pytest 配置 前端测试 (TypeScript/Vitest): - 工具函数测试: utils.test.ts - 组件测试: Button, VideoPlayer, ViolationList - Hooks 测试: useVideoAudit, useVideoPlayer, useAppeal - MSW mock handlers 配置 E2E 测试 (Playwright): - 认证流程测试 - 视频上传流程测试 - 视频审核流程测试 - 申诉流程测试 所有测试当前使用 pytest.skip() / it.skip() 作为占位符, 遵循 TDD 红灯阶段 - 等待实现代码后运行。 验收标准覆盖: - ASR WER ≤ 10% - OCR 准确率 ≥ 95% - Logo F1 ≥ 0.85 - 时间戳误差 ≤ 0.5s - 频次统计准确率 ≥ 95% Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
371 lines
12 KiB
Python
371 lines
12 KiB
Python
"""
|
||
竞品 Logo 检测服务单元测试
|
||
|
||
TDD 测试用例 - 基于 FeatureSummary.md F-12 的验收标准
|
||
|
||
验收标准:
|
||
- F1 ≥ 0.85(含遮挡 30% 场景)
|
||
- 新 Logo 上传即刻生效
|
||
"""
|
||
|
||
import pytest
|
||
from typing import Any
|
||
|
||
# 导入待实现的模块(TDD 红灯阶段)
|
||
# from app.services.ai.logo_detector import LogoDetector, LogoDetection
|
||
|
||
|
||
class TestLogoDetector:
|
||
"""Logo 检测器测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_logo_detector_initialization(self) -> None:
|
||
"""测试 Logo 检测器初始化"""
|
||
# TODO: 实现 Logo 检测器
|
||
# detector = LogoDetector()
|
||
# assert detector.is_ready()
|
||
# assert detector.logo_count > 0 # 预加载的 Logo 数量
|
||
pytest.skip("待实现:Logo 检测器初始化")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_detect_logo_in_image(self) -> None:
|
||
"""测试图片中的 Logo 检测"""
|
||
# TODO: 实现 Logo 检测
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg")
|
||
#
|
||
# assert result.status == "success"
|
||
# assert len(result.detections) > 0
|
||
pytest.skip("待实现:Logo 检测")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_logo_detection_output_format(self) -> None:
|
||
"""测试 Logo 检测输出格式"""
|
||
# TODO: 实现 Logo 检测
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg")
|
||
#
|
||
# # 验证输出结构
|
||
# assert hasattr(result, "detections")
|
||
# for detection in result.detections:
|
||
# assert hasattr(detection, "logo_id")
|
||
# assert hasattr(detection, "brand_name")
|
||
# assert hasattr(detection, "confidence")
|
||
# assert hasattr(detection, "bbox")
|
||
# assert 0 <= detection.confidence <= 1
|
||
# assert len(detection.bbox) == 4
|
||
pytest.skip("待实现:Logo 检测输出格式")
|
||
|
||
|
||
class TestLogoDetectionAccuracy:
|
||
"""Logo 检测准确率测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_f1_score_threshold(self) -> None:
|
||
"""
|
||
测试 Logo 检测 F1 值
|
||
|
||
验收标准:F1 ≥ 0.85
|
||
"""
|
||
# TODO: 使用标注测试集验证
|
||
# detector = LogoDetector()
|
||
# test_set = load_logo_labeled_dataset() # ≥ 200 张图片
|
||
#
|
||
# predictions = []
|
||
# ground_truths = []
|
||
#
|
||
# for sample in test_set:
|
||
# result = detector.detect(sample["image_path"])
|
||
# predictions.append(result.detections)
|
||
# ground_truths.append(sample["ground_truth_logos"])
|
||
#
|
||
# f1 = calculate_f1_score(predictions, ground_truths)
|
||
# assert f1 >= 0.85, f"F1 {f1:.2f} 低于阈值 0.85"
|
||
pytest.skip("待实现:Logo F1 测试")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_precision_recall(self) -> None:
|
||
"""测试查准率和查全率"""
|
||
# TODO: 使用标注测试集验证
|
||
# detector = LogoDetector()
|
||
# test_set = load_logo_labeled_dataset()
|
||
#
|
||
# precision, recall = calculate_precision_recall(detector, test_set)
|
||
#
|
||
# # 查准率和查全率都应该较高
|
||
# assert precision >= 0.80
|
||
# assert recall >= 0.80
|
||
pytest.skip("待实现:查准率查全率测试")
|
||
|
||
|
||
class TestLogoOcclusion:
|
||
"""Logo 遮挡检测测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
@pytest.mark.parametrize("occlusion_percent,should_detect", [
|
||
(0, True), # 无遮挡
|
||
(10, True), # 10% 遮挡
|
||
(20, True), # 20% 遮挡
|
||
(30, True), # 30% 遮挡 - 边界
|
||
(40, False), # 40% 遮挡 - 可能检测失败
|
||
(50, False), # 50% 遮挡
|
||
])
|
||
def test_logo_detection_with_occlusion(
|
||
self,
|
||
occlusion_percent: int,
|
||
should_detect: bool,
|
||
) -> None:
|
||
"""
|
||
测试遮挡场景下的 Logo 检测
|
||
|
||
验收标准:30% 遮挡仍可检测
|
||
"""
|
||
# TODO: 实现遮挡测试
|
||
# detector = LogoDetector()
|
||
# image_path = f"tests/fixtures/images/logo_occluded_{occlusion_percent}pct.jpg"
|
||
# result = detector.detect(image_path)
|
||
#
|
||
# if should_detect:
|
||
# assert len(result.detections) > 0, \
|
||
# f"{occlusion_percent}% 遮挡应能检测到 Logo"
|
||
# # 置信度可能较低
|
||
# assert result.detections[0].confidence >= 0.5
|
||
pytest.skip(f"待实现:{occlusion_percent}% 遮挡 Logo 检测")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_partial_logo_detection(self) -> None:
|
||
"""测试部分可见 Logo 检测"""
|
||
# TODO: 实现部分可见测试
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/logo_partial.jpg")
|
||
#
|
||
# # 部分可见的 Logo 应标记 partial=True
|
||
# if len(result.detections) > 0:
|
||
# assert result.detections[0].is_partial
|
||
pytest.skip("待实现:部分可见 Logo 检测")
|
||
|
||
|
||
class TestLogoDynamicUpdate:
|
||
"""Logo 动态更新测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_add_new_logo_instant_effect(self) -> None:
|
||
"""
|
||
测试新 Logo 上传即刻生效
|
||
|
||
验收标准:新增竞品 Logo 应立即可检测
|
||
"""
|
||
# TODO: 实现动态添加测试
|
||
# detector = LogoDetector()
|
||
#
|
||
# # 检测前应无法识别
|
||
# result_before = detector.detect("tests/fixtures/images/with_new_logo.jpg")
|
||
# assert not any(d.brand_name == "NewBrand" for d in result_before.detections)
|
||
#
|
||
# # 添加新 Logo
|
||
# detector.add_logo(
|
||
# logo_image="tests/fixtures/logos/new_brand_logo.png",
|
||
# brand_name="NewBrand"
|
||
# )
|
||
#
|
||
# # 检测后应能识别
|
||
# result_after = detector.detect("tests/fixtures/images/with_new_logo.jpg")
|
||
# assert any(d.brand_name == "NewBrand" for d in result_after.detections)
|
||
pytest.skip("待实现:Logo 动态添加")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_remove_logo(self) -> None:
|
||
"""测试移除 Logo"""
|
||
# TODO: 实现 Logo 移除
|
||
# detector = LogoDetector()
|
||
#
|
||
# # 移除前可检测
|
||
# result_before = detector.detect("tests/fixtures/images/with_existing_logo.jpg")
|
||
# assert any(d.brand_name == "ExistingBrand" for d in result_before.detections)
|
||
#
|
||
# # 移除 Logo
|
||
# detector.remove_logo(brand_name="ExistingBrand")
|
||
#
|
||
# # 移除后不再检测
|
||
# result_after = detector.detect("tests/fixtures/images/with_existing_logo.jpg")
|
||
# assert not any(d.brand_name == "ExistingBrand" for d in result_after.detections)
|
||
pytest.skip("待实现:Logo 移除")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_update_logo_variants(self) -> None:
|
||
"""测试更新 Logo 变体"""
|
||
# TODO: 实现 Logo 变体更新
|
||
# detector = LogoDetector()
|
||
#
|
||
# # 添加多个变体
|
||
# detector.add_logo_variant(
|
||
# brand_name="Brand",
|
||
# variant_image="tests/fixtures/logos/brand_variant_dark.png",
|
||
# variant_type="dark_mode"
|
||
# )
|
||
#
|
||
# # 应能检测新变体
|
||
# result = detector.detect("tests/fixtures/images/with_dark_logo.jpg")
|
||
# assert len(result.detections) > 0
|
||
pytest.skip("待实现:Logo 变体更新")
|
||
|
||
|
||
class TestLogoVideoProcessing:
|
||
"""视频 Logo 检测测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_detect_logo_in_video_frames(self) -> None:
|
||
"""测试视频帧中的 Logo 检测"""
|
||
# TODO: 实现视频帧检测
|
||
# detector = LogoDetector()
|
||
# frame_paths = [
|
||
# f"tests/fixtures/images/video_frame_{i}.jpg"
|
||
# for i in range(30)
|
||
# ]
|
||
#
|
||
# results = detector.batch_detect(frame_paths)
|
||
#
|
||
# assert len(results) == 30
|
||
# # 至少部分帧应检测到 Logo
|
||
# frames_with_logo = sum(1 for r in results if len(r.detections) > 0)
|
||
# assert frames_with_logo > 0
|
||
pytest.skip("待实现:视频帧 Logo 检测")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_logo_tracking_across_frames(self) -> None:
|
||
"""测试跨帧 Logo 跟踪"""
|
||
# TODO: 实现跨帧跟踪
|
||
# detector = LogoDetector()
|
||
#
|
||
# # 检测连续帧
|
||
# frame_results = []
|
||
# for i in range(10):
|
||
# result = detector.detect(f"tests/fixtures/images/tracking_frame_{i}.jpg")
|
||
# frame_results.append(result)
|
||
#
|
||
# # 跟踪应返回相同的 track_id
|
||
# track_ids = [
|
||
# r.detections[0].track_id
|
||
# for r in frame_results
|
||
# if len(r.detections) > 0
|
||
# ]
|
||
# assert len(set(track_ids)) == 1 # 同一个 Logo
|
||
pytest.skip("待实现:跨帧 Logo 跟踪")
|
||
|
||
|
||
class TestLogoSpecialCases:
|
||
"""Logo 检测特殊情况测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_no_logo_image(self) -> None:
|
||
"""测试无 Logo 图片"""
|
||
# TODO: 实现无 Logo 测试
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/no_logo.jpg")
|
||
#
|
||
# assert result.status == "success"
|
||
# assert len(result.detections) == 0
|
||
pytest.skip("待实现:无 Logo 图片处理")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_multiple_logos_detection(self) -> None:
|
||
"""测试多 Logo 检测"""
|
||
# TODO: 实现多 Logo 测试
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/multiple_logos.jpg")
|
||
#
|
||
# assert len(result.detections) >= 2
|
||
# # 每个检测应有唯一 ID
|
||
# logo_ids = [d.logo_id for d in result.detections]
|
||
# assert len(logo_ids) == len(set(logo_ids))
|
||
pytest.skip("待实现:多 Logo 检测")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_similar_logo_distinction(self) -> None:
|
||
"""测试相似 Logo 区分"""
|
||
# TODO: 实现相似 Logo 区分
|
||
# detector = LogoDetector()
|
||
# result = detector.detect("tests/fixtures/images/similar_logos.jpg")
|
||
#
|
||
# # 应能区分相似但不同的 Logo
|
||
# brand_names = [d.brand_name for d in result.detections]
|
||
# assert "BrandA" in brand_names
|
||
# assert "BrandB" in brand_names # 相似但不同
|
||
pytest.skip("待实现:相似 Logo 区分")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.unit
|
||
def test_distorted_logo_detection(self) -> None:
|
||
"""测试变形 Logo 检测"""
|
||
# TODO: 实现变形 Logo 测试
|
||
# detector = LogoDetector()
|
||
#
|
||
# # 测试不同变形
|
||
# test_cases = [
|
||
# "logo_stretched.jpg",
|
||
# "logo_rotated.jpg",
|
||
# "logo_skewed.jpg",
|
||
# ]
|
||
#
|
||
# for image_name in test_cases:
|
||
# result = detector.detect(f"tests/fixtures/images/{image_name}")
|
||
# assert len(result.detections) > 0, f"变形 Logo {image_name} 应被检测"
|
||
pytest.skip("待实现:变形 Logo 检测")
|
||
|
||
|
||
class TestLogoPerformance:
|
||
"""Logo 检测性能测试"""
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.performance
|
||
def test_detection_speed(self) -> None:
|
||
"""测试检测速度"""
|
||
# TODO: 实现性能测试
|
||
# import time
|
||
#
|
||
# detector = LogoDetector()
|
||
#
|
||
# start_time = time.time()
|
||
# result = detector.detect("tests/fixtures/images/1080p_sample.jpg")
|
||
# processing_time = time.time() - start_time
|
||
#
|
||
# # 单张图片应 < 200ms
|
||
# assert processing_time < 0.2
|
||
pytest.skip("待实现:Logo 检测速度测试")
|
||
|
||
@pytest.mark.ai
|
||
@pytest.mark.performance
|
||
def test_batch_detection_speed(self) -> None:
|
||
"""测试批量检测速度"""
|
||
# TODO: 实现批量性能测试
|
||
# import time
|
||
#
|
||
# detector = LogoDetector()
|
||
# frame_paths = [
|
||
# f"tests/fixtures/images/frame_{i}.jpg"
|
||
# for i in range(30)
|
||
# ]
|
||
#
|
||
# start_time = time.time()
|
||
# results = detector.batch_detect(frame_paths)
|
||
# processing_time = time.time() - start_time
|
||
#
|
||
# # 30 帧应在 2 秒内完成
|
||
# assert processing_time < 2.0
|
||
pytest.skip("待实现:批量 Logo 检测速度测试")
|