videos1.0/backend/tests/ai/test_logo_detector.py
Your Name 040aada160 feat: 添加全面的 TDD 测试套件框架
基于项目需求文档(PRD.md, FeatureSummary.md, DevelopmentPlan.md,
UIDesign.md, User_Role_Interfaces.md)编写的 TDD 测试用例。

后端测试 (Python/pytest):
- 单元测试: rule_engine, brief_parser, timestamp_alignment,
  video_auditor, validators
- 集成测试: API Brief, Video, Review 端点
- AI 模块测试: ASR, OCR, Logo 检测服务
- 全局 fixtures 和 pytest 配置

前端测试 (TypeScript/Vitest):
- 工具函数测试: utils.test.ts
- 组件测试: Button, VideoPlayer, ViolationList
- Hooks 测试: useVideoAudit, useVideoPlayer, useAppeal
- MSW mock handlers 配置

E2E 测试 (Playwright):
- 认证流程测试
- 视频上传流程测试
- 视频审核流程测试
- 申诉流程测试

所有测试当前使用 pytest.skip() / it.skip() 作为占位符,
遵循 TDD 红灯阶段 - 等待实现代码后运行。

验收标准覆盖:
- ASR WER ≤ 10%
- OCR 准确率 ≥ 95%
- Logo F1 ≥ 0.85
- 时间戳误差 ≤ 0.5s
- 频次统计准确率 ≥ 95%

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 17:22:24 +08:00

371 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
竞品 Logo 检测服务单元测试
TDD 测试用例 - 基于 FeatureSummary.md F-12 的验收标准
验收标准:
- F1 ≥ 0.85(含遮挡 30% 场景)
- 新 Logo 上传即刻生效
"""
import pytest
from typing import Any
# 导入待实现的模块TDD 红灯阶段)
# from app.services.ai.logo_detector import LogoDetector, LogoDetection
class TestLogoDetector:
"""Logo 检测器测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_logo_detector_initialization(self) -> None:
"""测试 Logo 检测器初始化"""
# TODO: 实现 Logo 检测器
# detector = LogoDetector()
# assert detector.is_ready()
# assert detector.logo_count > 0 # 预加载的 Logo 数量
pytest.skip("待实现Logo 检测器初始化")
@pytest.mark.ai
@pytest.mark.unit
def test_detect_logo_in_image(self) -> None:
"""测试图片中的 Logo 检测"""
# TODO: 实现 Logo 检测
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg")
#
# assert result.status == "success"
# assert len(result.detections) > 0
pytest.skip("待实现Logo 检测")
@pytest.mark.ai
@pytest.mark.unit
def test_logo_detection_output_format(self) -> None:
"""测试 Logo 检测输出格式"""
# TODO: 实现 Logo 检测
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/with_competitor_logo.jpg")
#
# # 验证输出结构
# assert hasattr(result, "detections")
# for detection in result.detections:
# assert hasattr(detection, "logo_id")
# assert hasattr(detection, "brand_name")
# assert hasattr(detection, "confidence")
# assert hasattr(detection, "bbox")
# assert 0 <= detection.confidence <= 1
# assert len(detection.bbox) == 4
pytest.skip("待实现Logo 检测输出格式")
class TestLogoDetectionAccuracy:
"""Logo 检测准确率测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_f1_score_threshold(self) -> None:
"""
测试 Logo 检测 F1 值
验收标准F1 ≥ 0.85
"""
# TODO: 使用标注测试集验证
# detector = LogoDetector()
# test_set = load_logo_labeled_dataset() # ≥ 200 张图片
#
# predictions = []
# ground_truths = []
#
# for sample in test_set:
# result = detector.detect(sample["image_path"])
# predictions.append(result.detections)
# ground_truths.append(sample["ground_truth_logos"])
#
# f1 = calculate_f1_score(predictions, ground_truths)
# assert f1 >= 0.85, f"F1 {f1:.2f} 低于阈值 0.85"
pytest.skip("待实现Logo F1 测试")
@pytest.mark.ai
@pytest.mark.unit
def test_precision_recall(self) -> None:
"""测试查准率和查全率"""
# TODO: 使用标注测试集验证
# detector = LogoDetector()
# test_set = load_logo_labeled_dataset()
#
# precision, recall = calculate_precision_recall(detector, test_set)
#
# # 查准率和查全率都应该较高
# assert precision >= 0.80
# assert recall >= 0.80
pytest.skip("待实现:查准率查全率测试")
class TestLogoOcclusion:
"""Logo 遮挡检测测试"""
@pytest.mark.ai
@pytest.mark.unit
@pytest.mark.parametrize("occlusion_percent,should_detect", [
(0, True), # 无遮挡
(10, True), # 10% 遮挡
(20, True), # 20% 遮挡
(30, True), # 30% 遮挡 - 边界
(40, False), # 40% 遮挡 - 可能检测失败
(50, False), # 50% 遮挡
])
def test_logo_detection_with_occlusion(
self,
occlusion_percent: int,
should_detect: bool,
) -> None:
"""
测试遮挡场景下的 Logo 检测
验收标准30% 遮挡仍可检测
"""
# TODO: 实现遮挡测试
# detector = LogoDetector()
# image_path = f"tests/fixtures/images/logo_occluded_{occlusion_percent}pct.jpg"
# result = detector.detect(image_path)
#
# if should_detect:
# assert len(result.detections) > 0, \
# f"{occlusion_percent}% 遮挡应能检测到 Logo"
# # 置信度可能较低
# assert result.detections[0].confidence >= 0.5
pytest.skip(f"待实现:{occlusion_percent}% 遮挡 Logo 检测")
@pytest.mark.ai
@pytest.mark.unit
def test_partial_logo_detection(self) -> None:
"""测试部分可见 Logo 检测"""
# TODO: 实现部分可见测试
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/logo_partial.jpg")
#
# # 部分可见的 Logo 应标记 partial=True
# if len(result.detections) > 0:
# assert result.detections[0].is_partial
pytest.skip("待实现:部分可见 Logo 检测")
class TestLogoDynamicUpdate:
"""Logo 动态更新测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_add_new_logo_instant_effect(self) -> None:
"""
测试新 Logo 上传即刻生效
验收标准:新增竞品 Logo 应立即可检测
"""
# TODO: 实现动态添加测试
# detector = LogoDetector()
#
# # 检测前应无法识别
# result_before = detector.detect("tests/fixtures/images/with_new_logo.jpg")
# assert not any(d.brand_name == "NewBrand" for d in result_before.detections)
#
# # 添加新 Logo
# detector.add_logo(
# logo_image="tests/fixtures/logos/new_brand_logo.png",
# brand_name="NewBrand"
# )
#
# # 检测后应能识别
# result_after = detector.detect("tests/fixtures/images/with_new_logo.jpg")
# assert any(d.brand_name == "NewBrand" for d in result_after.detections)
pytest.skip("待实现Logo 动态添加")
@pytest.mark.ai
@pytest.mark.unit
def test_remove_logo(self) -> None:
"""测试移除 Logo"""
# TODO: 实现 Logo 移除
# detector = LogoDetector()
#
# # 移除前可检测
# result_before = detector.detect("tests/fixtures/images/with_existing_logo.jpg")
# assert any(d.brand_name == "ExistingBrand" for d in result_before.detections)
#
# # 移除 Logo
# detector.remove_logo(brand_name="ExistingBrand")
#
# # 移除后不再检测
# result_after = detector.detect("tests/fixtures/images/with_existing_logo.jpg")
# assert not any(d.brand_name == "ExistingBrand" for d in result_after.detections)
pytest.skip("待实现Logo 移除")
@pytest.mark.ai
@pytest.mark.unit
def test_update_logo_variants(self) -> None:
"""测试更新 Logo 变体"""
# TODO: 实现 Logo 变体更新
# detector = LogoDetector()
#
# # 添加多个变体
# detector.add_logo_variant(
# brand_name="Brand",
# variant_image="tests/fixtures/logos/brand_variant_dark.png",
# variant_type="dark_mode"
# )
#
# # 应能检测新变体
# result = detector.detect("tests/fixtures/images/with_dark_logo.jpg")
# assert len(result.detections) > 0
pytest.skip("待实现Logo 变体更新")
class TestLogoVideoProcessing:
"""视频 Logo 检测测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_detect_logo_in_video_frames(self) -> None:
"""测试视频帧中的 Logo 检测"""
# TODO: 实现视频帧检测
# detector = LogoDetector()
# frame_paths = [
# f"tests/fixtures/images/video_frame_{i}.jpg"
# for i in range(30)
# ]
#
# results = detector.batch_detect(frame_paths)
#
# assert len(results) == 30
# # 至少部分帧应检测到 Logo
# frames_with_logo = sum(1 for r in results if len(r.detections) > 0)
# assert frames_with_logo > 0
pytest.skip("待实现:视频帧 Logo 检测")
@pytest.mark.ai
@pytest.mark.unit
def test_logo_tracking_across_frames(self) -> None:
"""测试跨帧 Logo 跟踪"""
# TODO: 实现跨帧跟踪
# detector = LogoDetector()
#
# # 检测连续帧
# frame_results = []
# for i in range(10):
# result = detector.detect(f"tests/fixtures/images/tracking_frame_{i}.jpg")
# frame_results.append(result)
#
# # 跟踪应返回相同的 track_id
# track_ids = [
# r.detections[0].track_id
# for r in frame_results
# if len(r.detections) > 0
# ]
# assert len(set(track_ids)) == 1 # 同一个 Logo
pytest.skip("待实现:跨帧 Logo 跟踪")
class TestLogoSpecialCases:
"""Logo 检测特殊情况测试"""
@pytest.mark.ai
@pytest.mark.unit
def test_no_logo_image(self) -> None:
"""测试无 Logo 图片"""
# TODO: 实现无 Logo 测试
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/no_logo.jpg")
#
# assert result.status == "success"
# assert len(result.detections) == 0
pytest.skip("待实现:无 Logo 图片处理")
@pytest.mark.ai
@pytest.mark.unit
def test_multiple_logos_detection(self) -> None:
"""测试多 Logo 检测"""
# TODO: 实现多 Logo 测试
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/multiple_logos.jpg")
#
# assert len(result.detections) >= 2
# # 每个检测应有唯一 ID
# logo_ids = [d.logo_id for d in result.detections]
# assert len(logo_ids) == len(set(logo_ids))
pytest.skip("待实现:多 Logo 检测")
@pytest.mark.ai
@pytest.mark.unit
def test_similar_logo_distinction(self) -> None:
"""测试相似 Logo 区分"""
# TODO: 实现相似 Logo 区分
# detector = LogoDetector()
# result = detector.detect("tests/fixtures/images/similar_logos.jpg")
#
# # 应能区分相似但不同的 Logo
# brand_names = [d.brand_name for d in result.detections]
# assert "BrandA" in brand_names
# assert "BrandB" in brand_names # 相似但不同
pytest.skip("待实现:相似 Logo 区分")
@pytest.mark.ai
@pytest.mark.unit
def test_distorted_logo_detection(self) -> None:
"""测试变形 Logo 检测"""
# TODO: 实现变形 Logo 测试
# detector = LogoDetector()
#
# # 测试不同变形
# test_cases = [
# "logo_stretched.jpg",
# "logo_rotated.jpg",
# "logo_skewed.jpg",
# ]
#
# for image_name in test_cases:
# result = detector.detect(f"tests/fixtures/images/{image_name}")
# assert len(result.detections) > 0, f"变形 Logo {image_name} 应被检测"
pytest.skip("待实现:变形 Logo 检测")
class TestLogoPerformance:
"""Logo 检测性能测试"""
@pytest.mark.ai
@pytest.mark.performance
def test_detection_speed(self) -> None:
"""测试检测速度"""
# TODO: 实现性能测试
# import time
#
# detector = LogoDetector()
#
# start_time = time.time()
# result = detector.detect("tests/fixtures/images/1080p_sample.jpg")
# processing_time = time.time() - start_time
#
# # 单张图片应 < 200ms
# assert processing_time < 0.2
pytest.skip("待实现Logo 检测速度测试")
@pytest.mark.ai
@pytest.mark.performance
def test_batch_detection_speed(self) -> None:
"""测试批量检测速度"""
# TODO: 实现批量性能测试
# import time
#
# detector = LogoDetector()
# frame_paths = [
# f"tests/fixtures/images/frame_{i}.jpg"
# for i in range(30)
# ]
#
# start_time = time.time()
# results = detector.batch_detect(frame_paths)
# processing_time = time.time() - start_time
#
# # 30 帧应在 2 秒内完成
# assert processing_time < 2.0
pytest.skip("待实现:批量 Logo 检测速度测试")