videos1.0/backend/tests/unit/test_timestamp_alignment.py
Your Name 040aada160 feat: 添加全面的 TDD 测试套件框架
基于项目需求文档(PRD.md, FeatureSummary.md, DevelopmentPlan.md,
UIDesign.md, User_Role_Interfaces.md)编写的 TDD 测试用例。

后端测试 (Python/pytest):
- 单元测试: rule_engine, brief_parser, timestamp_alignment,
  video_auditor, validators
- 集成测试: API Brief, Video, Review 端点
- AI 模块测试: ASR, OCR, Logo 检测服务
- 全局 fixtures 和 pytest 配置

前端测试 (TypeScript/Vitest):
- 工具函数测试: utils.test.ts
- 组件测试: Button, VideoPlayer, ViolationList
- Hooks 测试: useVideoAudit, useVideoPlayer, useAppeal
- MSW mock handlers 配置

E2E 测试 (Playwright):
- 认证流程测试
- 视频上传流程测试
- 视频审核流程测试
- 申诉流程测试

所有测试当前使用 pytest.skip() / it.skip() 作为占位符,
遵循 TDD 红灯阶段 - 等待实现代码后运行。

验收标准覆盖:
- ASR WER ≤ 10%
- OCR 准确率 ≥ 95%
- Logo F1 ≥ 0.85
- 时间戳误差 ≤ 0.5s
- 频次统计准确率 ≥ 95%

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 17:22:24 +08:00

366 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
多模态时间戳对齐模块单元测试
TDD 测试用例 - 基于 DevelopmentPlan.md (F-14, F-45) 的验收标准
验收标准:
- 时长统计误差 ≤ 0.5秒
- 频次统计准确率 ≥ 95%
- 时间轴归一化精度 ≤ 0.1秒
- 模糊匹配容差窗口 ±0.5秒
"""
import pytest
from typing import Any
# 导入待实现的模块TDD 红灯阶段)
# from app.utils.timestamp_align import (
# TimestampAligner,
# MultiModalEvent,
# AlignmentResult,
# )
class TestTimestampAligner:
"""
时间戳对齐器测试
验收标准:
- 时间轴归一化精度 ≤ 0.1秒
- 模糊匹配容差窗口 ±0.5秒
"""
@pytest.mark.unit
@pytest.mark.parametrize("asr_ts,ocr_ts,cv_ts,tolerance,expected_merged,expected_ts", [
# 完全对齐
(1000, 1000, 1000, 500, True, 1000),
# 容差范围内 - 应合并
(1000, 1200, 1100, 500, True, 1100), # 中位数
(1000, 1400, 1200, 500, True, 1200), # 中位数
# 超出容差 - 不应合并
(1000, 2000, 3000, 500, False, None),
(1000, 1600, 1000, 500, False, None), # OCR 超出容差
])
def test_multimodal_event_alignment(
self,
asr_ts: int,
ocr_ts: int,
cv_ts: int,
tolerance: int,
expected_merged: bool,
expected_ts: int | None,
) -> None:
"""测试多模态事件对齐"""
events = [
{"source": "asr", "timestamp_ms": asr_ts, "content": "测试文本"},
{"source": "ocr", "timestamp_ms": ocr_ts, "content": "字幕内容"},
{"source": "cv", "timestamp_ms": cv_ts, "content": "product_detected"},
]
# TODO: 实现 TimestampAligner
# aligner = TimestampAligner(tolerance_ms=tolerance)
# result = aligner.align_events(events)
#
# if expected_merged:
# assert len(result.merged_events) == 1
# assert abs(result.merged_events[0].timestamp_ms - expected_ts) <= 100
# else:
# # 未合并时,每个事件独立
# assert len(result.merged_events) == 3
pytest.skip("待实现TimestampAligner")
@pytest.mark.unit
def test_timestamp_normalization_precision(self) -> None:
"""
测试时间戳归一化精度
验收标准:精度 ≤ 0.1秒 (100ms)
"""
# 不同来源的时间戳格式
asr_event = {"source": "asr", "timestamp_ms": 1500} # 毫秒
cv_event = {"source": "cv", "frame": 45, "fps": 30} # 帧号 (45/30 = 1.5秒)
ocr_event = {"source": "ocr", "timestamp_seconds": 1.5} # 秒
# TODO: 实现时间戳归一化
# aligner = TimestampAligner()
# normalized = aligner.normalize_timestamps([asr_event, cv_event, ocr_event])
#
# # 所有归一化后的时间戳应在 100ms 误差范围内
# timestamps = [e.timestamp_ms for e in normalized]
# assert max(timestamps) - min(timestamps) <= 100
pytest.skip("待实现:时间戳归一化")
@pytest.mark.unit
def test_fuzzy_matching_window(self) -> None:
"""
测试模糊匹配容差窗口
验收标准:容差 ±0.5秒
"""
# TODO: 实现模糊匹配
# aligner = TimestampAligner(tolerance_ms=500)
#
# # 1000ms 和 1499ms 应该匹配(差值 < 500ms
# assert aligner.is_within_tolerance(1000, 1499)
#
# # 1000ms 和 1501ms 不应匹配(差值 > 500ms
# assert not aligner.is_within_tolerance(1000, 1501)
pytest.skip("待实现:模糊匹配容差")
class TestDurationCalculation:
"""
时长统计测试
验收标准 (FeatureSummary.md F-45):
- 时长统计误差 ≤ 0.5秒
"""
@pytest.mark.unit
@pytest.mark.parametrize("start_ms,end_ms,expected_duration_ms,tolerance_ms", [
(0, 5000, 5000, 500),
(1000, 6500, 5500, 500),
(0, 10000, 10000, 500),
(500, 3200, 2700, 500),
])
def test_duration_calculation_accuracy(
self,
start_ms: int,
end_ms: int,
expected_duration_ms: int,
tolerance_ms: int,
) -> None:
"""测试时长计算准确性 - 误差 ≤ 0.5秒"""
events = [
{"timestamp_ms": start_ms, "type": "object_appear"},
{"timestamp_ms": end_ms, "type": "object_disappear"},
]
# TODO: 实现时长计算
# aligner = TimestampAligner()
# duration = aligner.calculate_duration(events)
#
# assert abs(duration - expected_duration_ms) <= tolerance_ms
pytest.skip("待实现:时长计算")
@pytest.mark.unit
def test_product_visible_duration(
self,
sample_cv_result: dict[str, Any],
) -> None:
"""测试产品可见时长统计"""
# sample_cv_result 包含 start_frame=30, end_frame=180, fps=30
# 预期时长: (180-30)/30 = 5 秒
# TODO: 实现产品时长统计
# aligner = TimestampAligner()
# duration = aligner.calculate_object_duration(
# sample_cv_result["detections"],
# object_type="product"
# )
#
# expected_duration_ms = 5000
# assert abs(duration - expected_duration_ms) <= 500
pytest.skip("待实现:产品可见时长统计")
@pytest.mark.unit
def test_multiple_segments_duration(self) -> None:
"""测试多段时长累加"""
# 产品在视频中多次出现
segments = [
{"start_ms": 0, "end_ms": 3000}, # 3秒
{"start_ms": 10000, "end_ms": 12000}, # 2秒
{"start_ms": 25000, "end_ms": 30000}, # 5秒
]
# 总时长应为 10秒
# TODO: 实现多段时长累加
# aligner = TimestampAligner()
# total_duration = aligner.calculate_total_duration(segments)
#
# assert abs(total_duration - 10000) <= 500
pytest.skip("待实现:多段时长累加")
class TestFrequencyCount:
"""
频次统计测试
验收标准 (FeatureSummary.md F-45):
- 频次统计准确率 ≥ 95%
"""
@pytest.mark.unit
def test_brand_mention_frequency(
self,
sample_asr_result: dict[str, Any],
) -> None:
"""测试品牌名提及频次统计"""
# TODO: 实现频次统计
# counter = FrequencyCounter()
# count = counter.count_mentions(
# sample_asr_result["segments"],
# keyword="品牌"
# )
#
# # 验证统计准确性
# assert count >= 0
pytest.skip("待实现:品牌名提及频次")
@pytest.mark.unit
@pytest.mark.parametrize("text_segments,keyword,expected_count", [
# 简单情况
(
[{"text": "这个品牌真不错"}, {"text": "品牌介绍"}, {"text": "品牌故事"}],
"品牌",
3
),
# 无匹配
(
[{"text": "产品介绍"}, {"text": "使用方法"}],
"品牌",
0
),
# 同一句多次出现
(
[{"text": "品牌品牌品牌"}],
"品牌",
3
),
])
def test_keyword_frequency_accuracy(
self,
text_segments: list[dict[str, str]],
keyword: str,
expected_count: int,
) -> None:
"""测试关键词频次准确性"""
# TODO: 实现频次统计
# counter = FrequencyCounter()
# count = counter.count_keyword(text_segments, keyword)
#
# assert count == expected_count
pytest.skip("待实现:关键词频次统计")
@pytest.mark.unit
def test_frequency_count_accuracy_rate(self) -> None:
"""
测试频次统计准确率
验收标准:准确率 ≥ 95%
"""
# TODO: 使用标注测试集验证
# test_cases = load_frequency_test_set()
# counter = FrequencyCounter()
#
# correct = 0
# for case in test_cases:
# count = counter.count_keyword(case["segments"], case["keyword"])
# if count == case["expected_count"]:
# correct += 1
#
# accuracy = correct / len(test_cases)
# assert accuracy >= 0.95
pytest.skip("待实现:频次准确率测试")
class TestMultiModalFusion:
"""
多模态融合测试
"""
@pytest.mark.unit
def test_asr_ocr_cv_fusion(
self,
sample_asr_result: dict[str, Any],
sample_ocr_result: dict[str, Any],
sample_cv_result: dict[str, Any],
) -> None:
"""测试 ASR + OCR + CV 三模态融合"""
# TODO: 实现多模态融合
# aligner = TimestampAligner()
# fused = aligner.fuse_multimodal(
# asr_result=sample_asr_result,
# ocr_result=sample_ocr_result,
# cv_result=sample_cv_result,
# )
#
# # 验证融合结果包含所有模态
# assert fused.has_asr
# assert fused.has_ocr
# assert fused.has_cv
#
# # 验证时间轴统一
# for event in fused.timeline:
# assert event.timestamp_ms is not None
pytest.skip("待实现:多模态融合")
@pytest.mark.unit
def test_cross_modality_consistency(self) -> None:
"""测试跨模态一致性检测"""
# ASR 说"产品名"OCR 显示"产品名"CV 检测到产品
# 三者应该在时间上一致
asr_event = {"source": "asr", "timestamp_ms": 5000, "content": "产品名"}
ocr_event = {"source": "ocr", "timestamp_ms": 5100, "content": "产品名"}
cv_event = {"source": "cv", "timestamp_ms": 5050, "content": "product"}
# TODO: 实现一致性检测
# aligner = TimestampAligner(tolerance_ms=500)
# consistency = aligner.check_consistency([asr_event, ocr_event, cv_event])
#
# assert consistency.is_consistent
# assert consistency.cross_modality_score >= 0.9
pytest.skip("待实现:跨模态一致性")
@pytest.mark.unit
def test_handle_missing_modality(self) -> None:
"""测试缺失模态处理"""
# 视频无字幕时OCR 结果为空
asr_events = [{"source": "asr", "timestamp_ms": 1000, "content": "测试"}]
ocr_events = [] # 无 OCR 结果
cv_events = [{"source": "cv", "timestamp_ms": 1000, "content": "product"}]
# TODO: 实现缺失模态处理
# aligner = TimestampAligner()
# result = aligner.align_events(asr_events + ocr_events + cv_events)
#
# # 应正常处理,不报错
# assert result.status == "success"
# assert result.missing_modalities == ["ocr"]
pytest.skip("待实现:缺失模态处理")
class TestTimestampOutput:
"""
时间戳输出格式测试
"""
@pytest.mark.unit
def test_unified_timeline_format(self) -> None:
"""测试统一时间轴输出格式"""
# TODO: 实现时间轴输出
# aligner = TimestampAligner()
# timeline = aligner.get_unified_timeline(events)
#
# # 验证输出格式
# for entry in timeline:
# assert "timestamp_seconds" in entry
# assert "multimodal_events" in entry
# assert isinstance(entry["multimodal_events"], list)
pytest.skip("待实现:统一时间轴格式")
@pytest.mark.unit
def test_violation_with_timestamp(self) -> None:
"""测试违规项时间戳标注"""
# TODO: 实现违规时间戳
# violation = {
# "type": "forbidden_word",
# "content": "最好的",
# "timestamp_start": 5.0,
# "timestamp_end": 5.5,
# }
#
# assert violation["timestamp_end"] > violation["timestamp_start"]
pytest.skip("待实现:违规时间戳")