- 实现查询API (query.py): 支持star_id/unique_id/nickname三种查询方式 - 实现计算模块 (calculator.py): CPM/自然搜索UV/搜索成本计算 - 实现品牌API集成 (brand_api.py): 批量并发调用,10并发限制 - 实现导出服务 (export_service.py): Excel/CSV导出 - 前端组件: QueryForm/ResultTable/ExportButton - 主页面集成: 支持6种页面状态 - 测试: 44个测试全部通过,覆盖率88% Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
from fastapi import APIRouter, Depends
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
|
|
from app.database import get_db
|
|
from app.schemas.query import QueryRequest, QueryResponse, VideoData
|
|
from app.services.query_service import query_videos
|
|
from app.services.calculator import calculate_metrics
|
|
from app.services.brand_api import get_brand_names
|
|
from app.api.v1.export import set_export_data
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
@router.post("/query", response_model=QueryResponse)
|
|
async def query(
|
|
request: QueryRequest,
|
|
db: AsyncSession = Depends(get_db),
|
|
) -> QueryResponse:
|
|
"""
|
|
批量查询 KOL 视频数据.
|
|
|
|
支持三种查询方式:
|
|
- star_id: 按星图ID精准匹配
|
|
- unique_id: 按达人unique_id精准匹配
|
|
- nickname: 按达人昵称模糊匹配
|
|
"""
|
|
try:
|
|
# 1. 查询数据库
|
|
videos = await query_videos(db, request.type, request.values)
|
|
|
|
if not videos:
|
|
return QueryResponse(success=True, data=[], total=0)
|
|
|
|
# 2. 提取品牌ID并批量获取品牌名称
|
|
brand_ids = [v.brand_id for v in videos if v.brand_id]
|
|
brand_map = await get_brand_names(brand_ids) if brand_ids else {}
|
|
|
|
# 3. 转换为响应模型并计算指标
|
|
data = []
|
|
for video in videos:
|
|
video_data = VideoData.model_validate(video)
|
|
|
|
# 填充品牌名称
|
|
if video.brand_id:
|
|
video_data.brand_name = brand_map.get(video.brand_id, video.brand_id)
|
|
|
|
# 计算预估指标
|
|
metrics = calculate_metrics(
|
|
estimated_video_cost=video.estimated_video_cost,
|
|
natural_play_cnt=video.natural_play_cnt,
|
|
total_play_cnt=video.total_play_cnt,
|
|
after_view_search_uv=video.after_view_search_uv,
|
|
)
|
|
video_data.estimated_natural_cpm = metrics["estimated_natural_cpm"]
|
|
video_data.estimated_natural_search_uv = metrics["estimated_natural_search_uv"]
|
|
video_data.estimated_natural_search_cost = metrics["estimated_natural_search_cost"]
|
|
|
|
data.append(video_data)
|
|
|
|
# 缓存数据供导出使用
|
|
set_export_data([d.model_dump() for d in data])
|
|
|
|
return QueryResponse(success=True, data=data, total=len(data))
|
|
|
|
except Exception as e:
|
|
return QueryResponse(success=False, data=[], total=0, error=str(e))
|